Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Risk Anal ; 2023 Mar 27.
Article in English | MEDLINE | ID: covidwho-2268914

ABSTRACT

Exploring transmission risk of different routes has major implications for epidemic control. However, disciplinary boundaries have impeded the dissemination of epidemic information, have caused public panic about "air transmission," "air-conditioning transmission," and "environment-to-human transmission," and have triggered "hygiene theater." Animal experiments provide experimental evidence for virus transmission, but more attention is paid to whether transmission is driven by droplets or aerosols and using the dichotomy to describe most transmission events. Here, according to characteristics of experiment setups, combined with patterns of human social interactions, we reviewed and grouped animal transmission experiments into four categories-close contact, short-range, fomite, and aerosol exposure experiments-and provided enlightenment, with experimental evidence, on the transmission risk of severe acute respiratory syndrome coronavirus (SARS-COV-2) in humans via different routes. When referring to "air transmission," context should be showed in elaboration results, rather than whether close contact, short or long range is uniformly described as "air transmission." Close contact and short range are the major routes. When face-to-face, unprotected, horizontally directional airflow does promote transmission, due to virus decay and dilution in air, the probability of "air conditioning transmission" is low; the risk of "environment-to-human transmission" highly relies on surface contamination and human behavior based on indirect path of "fomite-hand-mucosa or conjunctiva" and virus decay on surfaces. Thus, when discussing the transmission risk of SARS-CoV-2, we should comprehensively consider the biological basis of virus transmission, environmental conditions, and virus decay. Otherwise, risk of certain transmission routes, such as long-range and fomite transmission, will be overrated, causing public excessive panic, triggering ineffective actions, and wasting epidemic prevention resources.

2.
Environ Sci Pollut Res Int ; 28(40): 56376-56391, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1384555

ABSTRACT

It is important to know whether SARS-CoV-2 is spread through the air conditioning systems. Taking the central air conditioning system as an example, we analyze the mechanism and potential health risk of respiratory virus transmission in air-conditioned rooms and propose a method to study the risk of virus transmission in central air conditioning systems by investigating the data from medical experiments. The virus carrying capacity and the decay characteristics of indoor pathogen droplets are studied in this research. Additionally, the effects of air temperature and relative humidity on the virus survival in the air or on surfaces are investigated. The removal efficiency of infectious droplet nuclei by using an air conditioning filter was then determined. Thus, the transmission risk during the operation of the centralized air conditioning system is evaluated. The results show that the indoor temperature and humidity are controlled in the range of 20-25 °C and 40-70% by central air conditioning during the epidemic period, which not only benefits the health and comfort of residents, but also weakens the vitality of the virus. The larger the droplet size, the longer the viruses survive. Since the filter efficiency of the air conditioning filter increases with the increase in particle size, increasing the number of air changes of the circulating air volume can accelerate the removal of potential pathogen particles. Therefore, scientific operation of centralized air conditioning systems during the epidemic period has more advantages than disadvantages.


Subject(s)
Air Conditioning , Air Pollution, Indoor , COVID-19 , Viruses , Air Microbiology , Air Pollution, Indoor/analysis , COVID-19/transmission , Humans , Humidity , SARS-CoV-2 , Virus Diseases/transmission
3.
Environ Res ; 194: 110716, 2021 03.
Article in English | MEDLINE | ID: covidwho-1213219

ABSTRACT

The complex and changeable environment is a brand-new living condition for the viruses and pathogens released by the infected people to the indoor air or deposited on the surface of objects, which is an important external condition affecting the decay and transmission risk of the viruses. Exposure to contaminated surfaces is one of the main routes of respiratory diseases transmission. Therefore, it is very important for epidemic prevention and control to study the law of virus decay and the environmental coupling effect on various surfaces. Based on the analysis of the influencing mechanism, a large amount of experimental evidence on the survival of viruses on the surface of objects were excavated in this paper, and the effects of various factors, such as surface peripheral temperature, relative humidity, virus-containing droplet volume, surface materials and virus types, on the decay rate constants of viruses were comprehensively analyzed. It was found that although the experimental methods, virus types and experimental conditions varied widely in different experiments, the virus concentrations on the surface of objects all followed the exponential decay law, and the coupling effect of various factors was reflected in the decay rate constant k. Under different experimental conditions, k values ranged from 0.001 to 100 h-1, with a difference of 5 orders of magnitude, corresponding to the characteristic time t99 between 500 and 0.1 h when the virus concentration decreased by 99%. This indicates a large variation in the risk of virus transmission in different scenarios. By revealing the common law and individuality of the virus decay on the surface of objects, the essential relationship between the experimental observation phenomenon and virus decay was analyzed. This paper points out the huge difference in virus transmission risk on the surface at different time nodes, and discusses the prevention and control strategies to grasp the main contradictions in the different situations.


Subject(s)
Viruses , Climate , Humans , Humidity , Temperature
4.
Infect Dis Now ; 51(3): 219-227, 2021 May.
Article in English | MEDLINE | ID: covidwho-1033594

ABSTRACT

The novel human coronavirus SARS-CoV-2 has been responsible for a worldwide pandemic. Although media transmission through contaminated surfaces is one of the most recognized ways of transmission, the study on the number and viability of viruses surviving on a surface after leaving the host represents a "blind spot" in current research. In this paper we have reviewed studies on the physical process of droplet evaporation on media surfaces, and analyzed the recent literature related to experiments on the decay of the viral concentration and infectious activity of SARS-CoV-2 and other viruses on those surface and in the air. The huge differences in the risk of media transmission of large saliva and sputum droplets were analyzed in terms of time elapsed. Due to the rapid decrease of water content in the evaporated droplets and the increased concentration of each component, the living environment of the virus tended to deteriorate sharply, and virus concentration plummeted within a few minutes. Although a virus can be detected in a matter of hours, tens of hours, or days, the risk of transmission is negligible compared to when it first left the host. This study suggests that the key to prevention and control is to start from the source, the earlier the better. It is extremely important to develop good public health habits, wear masks, and wash hands frequently. That said, excessive disinfection and sterilization of surfaces during a later period may have adverse effects.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious , Mucus/virology , SARS-CoV-2/physiology , Saliva/virology , Sputum/virology , Virus Physiological Phenomena , Air Microbiology , Bacteria/isolation & purification , COVID-19/virology , Cough , Desiccation , Disease Transmission, Infectious/prevention & control , Equipment Contamination , Fomites , Humans , Humidity , Hygiene , Particle Size , Respiration , Risk , SARS-CoV-2/isolation & purification , Sneezing , Speech , Temperature , Time Factors , Viral Load , Viruses/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL